

Corina Carpentier

In situ Biomass Quantification of Microphytobenthos: a First Step Towards an Alternative Method for Assessing Stream Eutrophication under the WFD

AquaLife Workshop 4-6 June Kiel, Germany

Introduction

- WFD and microphytobenthos in rivers and streams
- Commonly used methods
 - EN 13946 / EN 14407
 - EN 15708
- In situ fluorescence measurements
- Nutrient biomass relationships

WFD - Microphytobenthos

Indicator for eutrophication in rivers and streams

Organisms:

- sessile
- take up nutrients from water-phase
- respond rapidly to changing conditions
- Ecology:
 - support lotic food webs food source for grazers
 - attenuate current
 - stabilise sediments

Microphytobenthos Analysis

- Biodiversity assessment
 - EN 13946 / EN 14407: benthic diatoms
 - EN 15708: phytobenthos
- Calculation of index values:
 - diversity index: disturbance/stress
 - saprobic index: organic pollution
- Additionally:
 - evenness index: even distribution of abundance

Species Diversity Assessment

- Hungary: 6500 diatom species
- Germany: 1000 phytobenthos species
- France: 6500 diatom species
- Poland: 520 diatom species
- Czech Republic:
 - 252 blue-green algae species
 - 521 diatom species
 - 990 green algae species
 - 750 chromophyte species
 - 324 flagellate species
 - Total: 2,837 species

Diatomee (Kieselalge)

10µm

WFD Implementation

- Austria:
 - experts at eco-region level required
 - official registry of biological experts: 6
 - high quality guaranteed
- Biodiversity analysis very difficult as routine method
- > 120 river basins in Europe
 - minimum frequency: once every 3 years
 - provide "sufficient data for reliable assessment"
 - exclude seasonal and geographical variation

Alternative Method

- Suitable for routine analysis
- Practical
- 🖵 Fast
- Affordable

substrate	before (µg/cm²)	after (µg/cm²)	removal
cyanobacteria	1.20	0.45	62.4%
diatoms	0.17	0.15	13.4%

In Situ Fluorescence Method

- Easy and fast
- Large transects, in situ measurements
- General information on all algal groups
- No detailed information at species level
- Substratum variability solved by 700nm LED
- To be studied:
 - dark adaptation?
 - representativeness patchy distribution

Representativeness

Sampling Sites

- Aim of study
- Select sites representative of river-stretch under investigation
- Avoid heavily shaded sites
- Check similar conditions for
 - light
 - current velocity
 - substratum
- Survey units of similar length (10m)
- Consider seasonal run-off

Microphytobenthos Biomass

- Current velocity
- Frequency of biomass-scouring floods
- Suspended sediment
- Shading
- Substratum type
- 🗖 Grazing

Nutrient-Biomass Relationships

Lakes:

- nutrient loading
- average residence time
- Streams and Rivers:
 - nutrient supply
 - frequency of flood disturbance
 - (if both low: grazing)

Example from Australia/USA

$B^* = k_1 d_a + k_2 n + c$

- B* : mean monthly biomass of benthic algae
- K_1/k_2 : coefficients
- d_a : number of days available for biomass accrual
- n : measure of nutrient supply (mean monthly SRP/SIN)
- c : empirical constant

Conditions resulting in max. phytobenthos biomass

O-M: 6 μg/cm² M-E: 20 μg/cm²

Corina Carpentier

In situ Biomass Quantification of Microphytobenthos: A First Step Towards an Alternative Method for Assessing Stream Eutrophication under the WFD

AquaLife Workshop 4-6 June Kiel, Germany